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Symmetry-breaking commensurate states in generalised 
Frenkel-Kontorova models 

Kazuo SasakiT and Luis M FloriaS 
Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, 
USA 

Received 18 July 1988 

Abstract. Ground states of classical, one-dimensional systems consisting of atoms connected 
with harmonic springs subject to a periodic, symmetric potential are studied. It is shown that 
some choices of the periodic potential yield periodic (commensurate) ground states lacking 
the reflection symmetry of the Hamiltonian. The phase diagram of the ground states of a 
specific model which exhibits asymmetric commensurate phases is studied in detail. The 
transition from an asymmetric commensurate state to an incommensurate state is mediated 
by two types of solitons (discommensurations), while that from a symmetric one is mediated 
by a single type of soliton. Solitons are symmetric or asymmetric depending on the model 
parameters. First- and second-order transitions between symmetric and asymmetric states 
with the same periodoccur as thestrengthof the potentialis varied. The soliton that mediates 
transitions from a commensurate to an incommensurate state changes its character infinitely 
many times as a first-order transition line is approached. 

1. Introduction 

Spatially modulated structures are often found in condensed-matter systems, such as 
atomic monolayers on crystal surfaces, magnetic systems and charge-density-wave sys- 
tems (Bak 1982). One of the simplest theoretical models that produces such structures 
consists of a classical atomic chain, in which atoms are connected with harmonic springs, 
subject to a periodic potential. The energy (Hamiltonian) of the model is given by 

H = E [4(un - U n - 1  - y)* + V(u,)l 
n 

where U, is the position of the nth atom, y is the natural length of the spring and 

V(u + 1) = V(u) 
is the periodic potential. The model (1.1) with a sinusoidal Vis often called the Frenkel- 
Kontorova model (Frenkel and Kontorova 1938). The first term in (1.1) favours a 
uniform structure with atomic spacing y ,  while the second term forces the atoms to sit 
as close as possible to the minima of the potential. As a result of the competition between 
these two energies, the system finds a spatially modulated structure as a minimum- 
energy state (ground state). The structure is said to be commensurate if U ,  modulo 1 is 
t Permanent address: Department of Engineering Science, Faculty of Engineering, Tohoku University, 
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Figure 1. Spatially modulated structures of period 
3 in generalised Frenkel-Kontorova models, 
(1.1) and (1.2). 

a periodic function of n ,  and to be incommensurate otherwise. 
Figure 1 schematically shows possible modulated structures with period 3. The 

ground state of type-A structure is seen, for example, in the Frenkel-Kontorova model. 
The type-B ground state, which is characterised by the presence of atoms at maxima of 
the potential, is found in the model with V a cosine plus a small second-harmonic term 
with the proper sign when the strength of the potential is weak (Griffiths and Chou 1986, 
Chou and Griffiths 1986). In this model a first-order transition from type-B to type-A 
ground states is observed when the potential strength is increased (Griffiths and Chou 
1986, Chou and Griffiths 1986). One expects the type-C structure (C, and C2 in figure 
1) when V(u) is an asymmetric function. In this paper we show that asymmetric, type-C 
ground states appear even when the potential is symmetric: 

V(u) = V ( - U ) .  (1.3) 
If this is the case, two distinct phases, one of which is the mirror image of the other, can 
coexist (e.g. C1 and C2 in figure 1). 

It is known (Aubry 1983a, Aubry and Le Dearon 1983) that in most cases a com- 
mensurate ground state of (1.1) is stable over a finite interval of y .  The commensurate 
state is unstable against the creation of defects (solitons or discommensurations) outside 
this interval. When the commensurate ground state is symmetric (type A or B), a soliton 
energy becomes zero at an edge of the interval, while the sum of energies of two distinct 
solitons becomes zero in the case of an asymmetric commensurate state (see § 2). 

We study the phase diagram of the ground states of a specific model which exhibits 
asymmetric commensurate states by using the method of effective potentials (Griffiths 
and Chou 1986, Chou and Griffiths 1986) and other methods (§ 4). Numerical solutions 
to the non-linear eigenvalue equation of the method of effective potentials are obtained 
by employing a new algorithm (Floria and Griffiths 1988) which yields exact results 
for a discretised version of the equation (§ 3). Solitons that cause the instability of 
commensurate states are symmetric or asymmetric depending on the location in the 
phase diagram. In § 5 we discuss under what conditions asymmetric ground states of 
period 2 appear for a certain class of potential V. 

2. Commensurate states with and without symmetry 

2.1. Ground states 

In this section we discuss some of the general properties associated with commensurate 
states of (1.1) with periodic, symmetric V(i.e. V(u)  satisfies (1.2) and (1.3)). Any such 
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a function V(u)  can be expressed by a Fourier cosine series: 
a 

v(U) = [K/(2n)*] & k [ l  - C O S ( ~ J T ~ U ) ]  ( E 1  = 1). (2.1) 
k = l  

We assume K > 0. If the &k (k > 1) are not too large, V(u)  has one absolute minimum 
at U = 0 (modulo 1) and one absolute maximum at U = 3 (modulo 1) in each period. In 
the following we assume this is the case, except in § 5. 

A configuration {U,} is commensurate if there are irreducible, positive integers P and 
Q such that for any integer n, 

where Q is the period of the structure. The average atomic spacing w defined by 

is a rational number P/Q. We call w the winding number. 

integers r a n d s  such that for any integer n,  

U,+Q = P + U ,  (2.2) 

= (u,+Q - u,)/Q (2.3) 

A commensurate state {U,} of period Q is called type A (cf figure 1), if there exist 

U , + ,  - s = s - Ur- ,  ( Q  odd) (2.4) 
U , + ,  - s = s - U , + I - ,  (Q even). (2.5) 

For Q odd there are atoms at minima of the potential V ,  while there are no atoms at 
minima of Vfor Q even. A commensurate state {U,} is called type B (cf figure l ) ,  if there 
exist integers r and s such that for any integer n, 

U , + ,  - (s + 3) = (s + h) - ur-,. (2.6) 
In type-B configurations there are atoms at maxima of the potential V. A periodic 
configuration {U,} that does not satisfy any of (2.4)-(2.6) is called type C (cf figure 
1). Both type-A and type-B configurations have reflection symmetry, while type-C 
configurations are asymmetric. 

It is convenient to introduce thephasex of a commensurate configuration {U,}, which 
plays the role of an order parameter to distinguish distinct ground states with the same 
winding number. The phase x of a configuration {U,} of period Q is defined by 

X =  

X =  (1/Q> U,+, - @ a  (Q even). 
i = -Q/2 + 1 

Note that x does not depend on the choice of the integer n in (2.7) or (2.8). Intuitively, 
x represents ‘the centre-of-mass coordinate of a unit cell’. From the definitions (2.4)- 
(2.8), one find that x = 0 (modulo l /Q) for type-A states and x = 1/2Q (modulo l/Q) 
for type-B states. 

The energy associated with the order parameter x, which is the analogue of the 
Landau free energy, may be introduced as follows (Aubry 1983b). Find a minimum- 
energy configuration of period Q under the constraint that the phase variable x defined 
by (2.7) and (2.8) is fixed. The ‘Landau potential’ U(x) is the energy per particle of the 
configuration thus found. Because V(u) is periodic and symmetric, U(x) is also periodic 
and symmetric: 

U(x + l /Q)  = U(x)  (2.9) 
U(-x) = U(x). (2.10) 
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- l /Q -1/2Q 0 x, 1/20 x 2  
X 

Figure 2. A 'Landau potential' U ( x )  which yields commensurate ground states without 
reflection symmetry. 

The period of U(x)  is l /Q ,  since a configuration {U,} with phase x has the same energy 
as the shifted configuration {U,, + l} with phase x + 1 and the renumbered configuration 
{U,,,} with phase x + w ,  where w = P/Q is the winding number (Aubry 1983b). The 
absolute minima of U(x) correspond to (degenerate) commensurate ground states. If 
U(x) has only one absolute minimum per period, equation (2.10) implies the ground 
state is either type A (x = 0) or type B (x = 1/2Q). It should be noted, however, that 
U ( x )  can have, in general, more than one minimum per period. If it has two minima, for 
example, as schematically shown in figure 2, ground states of type C are realised. The 
configuration corresponding to the minimum x2 in figure 2 is a mirror image of the one 
corresponding to xl .  Although Aubry pointed out the possible existence of such ground 
states, he had no examples and claimed such a situation is exceptional (Aubry 1983a). 

2.2. Solitons (discommensurations) 

A commensurate state is stable over a finite interval of the parameter y ,  provided that 
the corresponding U(x) is not a constant. Outside the interval the commensurate state 
is unstable against creation of solitons (discommensurations). A soliton configuration 
{U,} is a local minimum-energy configuration (any local perturbation cannot decrease 
the energy) which approaches two distinct ground states {U,'} and { U ; }  asymptotically: 

The phases xc and x- corresponding to {U:}  and { U ; }  are locations of two neighbouring 
minima of the Landau potential U ( x ) .  What we call solitons here correspond to what 
Aubry calls elementary discommensurations (see for example theorem 3 of Aubry 
(1983a)). When x- < x+ (x- > x'), the configuration {U,} is called an advanced (a 
retarded) soliton. It is clear from figure 2 that there are two types of advanced (retarded) 
solitons associated with asymmetric commensurate states: One corresponds to a soliton 
withx- = -xl andx' = x1 (x- = x1 andx+ = -xl), and the other withx- = x1 andx+ = 
x2 (x- = x2 and x+ = xl). The situation is quite analogous to the (continuum) double- 
sine-Gordon model with two types of solitons (Condat et aZl983, DeLeonardis and 
Trullinger 1983). 

The creation energy E of a soliton {U,}, which satisfies (2.11), with respect to the 
underlying commensurate ground state may be calculated by 

U ,  + U,' as n + ? x .  (2.11) 

s + Q  r 

E = lim (I/Q) X X [ K ( U n ,  ~ ~ - 1 )  - ~ ( u ; ,  u ; - ~ > I  (2.12) 
P.q+= r = q + l  n = - p t l  
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where 

K(u,  U’) = $(U - U’ - y)2 + V(U) (2.13) 

and Q is the period of the ground state?. Note that the quantity 

(2.14) 

does not, in general, converge as r+ CO; it oscillates as a function of r for large r.  We 
therefore need the second summation in (2.12), which averages out the oscillation. The 
soliton energy (2.12) depends linearly on y ,  and the coefficient of the linear dependence 
is given by the ‘phase shift’ associated with the soliton: 

(2.15) 

where X’ and x -  are the phases of two ground states {U,’} and {U;}. The formula (2.15) 
is derived from equations (2.7), (2.8) and (2.12) and the fact that the stationary con- 
figurations {U,}, {U:} and {U;} are independent of y (this is because the force equilibrium 
equations aH/aun = 0, which all stationary configurations satisfy, does not depend on 
y ) .  From the arguments in the previous paragraph, the right-hand side of (2.15) is found 
to be - l /Q  (+l /Q)  for an advanced (aretarded) soliton if the ground state is symmetric. 
If E in the left-hand side of (2.15) is replaced by the sum of energies of two advanced 
(retarded) solitons of different types, in the case of asymmetric ground states, the right- 
hand side will be - 1/Q (+ l /Q).  

A commensurate state with winding number w is stable as long as the energies of 
solitons created on it are positive. Equation (2.15) shows this to be true over a finite 
interval of y ,  y - (w)  < y < y+(w).  If the ground state is symmetric, the right (left) edge 
of the interval, y+ ( y - ) ,  is the point at which the energy of advanced (retarded) soliton, 
E+ ( E - ) ,  is zero: E+ < 0 (E-  < 0) for y > y+ ( y  < y - ) .  As y is increased from y+(w),  
the ground state changes its configuration whose winding number increases continuously 
(theorem 9 of Aubry (1983a)). The ground-state configuration for y slightly larger than 
y+(w) can be viewed as a periodic (or quasi-periodic) array of advanced solitons in the 
background of the commensurate structure of winding number W .  If the commensurate 
ground state is asymmetric, the edges of the interval, y+ and y - ,  over which this state is 
stable are determined by the conditions 

E: + E :  = O  a t y =  y +  (2.16) 

E ; + E ; = O  at y = y - .  (2.17) 

Here E: ( E ; )  a n d E i  ( E ; )  aretheenergiesoftwodifferenttypesof advanced(retarded) 
solitons (type 1 and type 2). We note that one of E: and E:, say E: ,  is negative and 
the other is positive at y = y+ (the same is true at y = y - ) ;  E: is negative over a finite 
portion of the interval y-  < y < y+.  The negative energy of one type of soliton does not 
imply any phase transition, because if one tries to put a finite density of type-1 solitons 
(which have negative energies) one is forced to introduce the same amount of type-2 
solitons (topological constraint). Therefore, the phase transition occurs when (2.16) is 
satisfied. 
t Tang (1987) and Tang and Griffiths (1988) give an expression for the energy of a ‘defect’ {U”} whose 
limiting configurations {U;} and {U;} are ‘phase shifted’ from each other, i.e. they are related by 
U,’ = U,;, + s with some integers I and s; their expression is therefore applicable to a soliton created on a 
symmetric commensurate state. Equation (2.12), which applies to a soliton created on an asymmetric com- 
mensurate state as well, is equivalent to their expression in the case of a symmetric ground state. 

aE/ay = X +  - X -  
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3. The method of effective potentials 

3.1. Formalism 

In this section the essentials of the method of effective potentials are explained. The 
method provides the ground-state energy, the ground-state configuration and some 
information about soliton excitations. The exposition will be intuitive rather than rig- 
orous. A more complete introduction can be found in the original papers (Griffiths and 
Chou 1986, Chou and Griffiths 1986). Although the applicability of the method of 
effective potentials extends to more general models, the following presentation is centred 
on the model (1. 1), where, for the sake of brevity, W(x - y )  will denote the energy of a 
harmonic spring joining atoms placed at locations x and y .  

Consider a semi-infinite chain of atoms extending to the left placed in the periodic 
potential V. The location of the right-most atom is held fixed at U while the other atoms 
are allowed to relax to a state of minimum energy. Let us call R( U) the ‘effective potential’ 
acting on the right-most atom, so that R’(u) is the force that must be externally applied 
to hold the end atom at position U .  The position of the atom next to the right-most one 
is given by U ’ ,  which minimises W(U - U ’ )  + R(u’) ,  so that the ‘right’ effective potential 
R(u)  satisfies the equation 

A + R(u)  = V ( U )  + min[W(u - U ’ )  + R(u’)]  (3.1) 
U ’  

where il is a constant. We consider (3.1) as an eigenvalue equation, where we impose 
the periodicity condition 

R ( l  + U )  = R(u) .  ( 3 4  
The eigenvalue A turns out to be the energy per atom in the ground state. 

the ‘left’ effective potential S(U’)  satisfies the equation 
Analogously, for the left-most atom in a semi-infinite chain extending to the right, 

A + S(U’)  = V(U’)  + min[W(u - U ’ )  + S ( U ) ]  (3.3) 
U 

and the periodicity condition 

S(1 + U ’ )  = S ( U ’ ) .  

F ( u )  = R(u)  + S ( U )  - V ( U )  

(3.4) 

(3.5) 

The ’total’ effective potential F(u) experienced by an atom in a doubly infinite chain is 

where V ( U )  is subtracted to avoid double counting. 
Once the eigenvalue equation (3.1) is solved, the ground-state configuration is 

obtained as follows. The map t ( u ) ,  associated with a solution R of (3.1), assigns to each 
position U the point U’ (not unique, in general) at which the minimum on the right-hand 
side is achieved. The map a(u’) ,  associated with a solution S of (3.3), is defined in a 
similar way. An infinite sequence of points {U,}, n G p ,  is an R half-orbit provided 

U,-1  E Z(U,,) for all n 4 p .  (3.6) 

U n + 1  E d u n )  for all n 3 q. (3.7) 

Similarly {U,}, n 2 q ,  is an S half-orbit if 

A doubly infinite sequence {U,} is an R orbit if (3.6) holds for all integers and it is an S 
orbit if (3.7) holds for all integers. The attractor of the map z (a)  is an R (S) orbit. An R 
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orbit is always a ground state and, for a given periodic ground state, there is an R 
satisfying the minimisationeigenvalue equation (3.1) such that the given periodic ground 
state is the associated R orbit. The same statements hold for S orbits. 

Assuming that V and Ware continuous functions, it can be shown that there is some 
continuous and periodic function R which satisfies (3.1) and that the corresponding A is 
unique for a given V and W. Even if V and W have continuous first derivatives, the 
effective potentials can, in general, have 'upward kinks', i.e. points in which the first 
derivatives decrease discontinuously. These upward kinks correspond to discontinuities 
in the corresponding map. 

If the potential V(u) is symmetric, i.e. satisfies (1.3), a solution to (3.3) can be 
constructed from a solution to (3.1), or vice versa, by setting 

S ( U )  = R ( - u )  (3.8) 
and the corresponding S orbit is the mirror image of the R orbit. 

Although this method is valid for commensurate and incommensurate states, we are 
considering only commensurate (periodic) ground states and, however degenerate, we 
will call a ground state unique when all other ground states can be obtained from it by 
translation and/or relabelling, i.e. by transformations U,, --., U,+, + s with some integers 
r and s. A ground state of type C is not unique because its mirror image cannot be 
obtained from it by those transformations. In the following a ground state of type C will 
be denoted by C1 and its mirror image by C2. 

If the ground state is unique (state of type Aor B) the absolute minimaof the effective 
potential F(u) are located at the points belonging to the ground-state configuration. 
When the ground state is of type C there are two effective potentials Fl(u) and F2(u) 
corresponding to the two ground states C1 and Cz: 

F,(u) = R,(u) + - V u )  (3.9) 
where a = 1 or 2, and R ,  and S ,  are the solutions of (3.1) and (3.3) for the ground state 
C,. The ground state C, is an Rff  and S ,  orbit, and the absolute minima of Fff correspond 
to the locations of atoms in the ground state C,. Since C2 is the mirror image of C1, the 
following relations between the effective potentials hold: 

= Sp(-u) Fff(u) = Fp(-u) (3.10) 

where a, p = 1 ,2  ( a  # p). 
If y is close enough to the edge of stability (y' or y- )  of a unique periodic ground 

state, several secondary minima other than the absolute ones appear in the potential F; 
see figure 5 below. Those points belong to the soliton configuration (advanced or 
retarded) and the soliton energy is given by 

(3.11) 

where uo is any point in the ground state and U, is any point of the secondary minima of 
F. This formula is obtained from (2.12) and the fact that the soliton configuration is an 
R half-orbit and an S half-orbit. 

If y is close enough to the edge of stability (y' or y - )  of a type-C periodic ground 
state, there appear infinitely many secondary minima in the potential F, ( a  = 1 or 2); 
see figure 6 below. The locations of those minima correspond to a configuration with 
two solitons infinitely far apart. The two solitons are advanced solitons of different types 
if y is close to y', or retarded solitons of different types if y is close to y- .  The formula 
(3.11) with Freplaced by F, gives the sum of the energies of the two solitons, which can 

E = F(u,) - F(u0) 
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be used to calculate the phase boundary of a type-C ground state. 

obtained from a 'mixed' effective potential defined by 
The information about a single soliton, in the case of a type-C ground state, can be 

F e p W  = R,(U) + S p W  - V U )  (E+ B).  (3.12) 

If y is close enough to the edge of stability (y+ or y-) of a type-C periodic ground state, 
the absolute minima of F,,(u) sit on the points belonging to the corresponding (advanced 
or retarded) soliton configuration. which tends towards C, to the left and towards C, to 
the right. The soliton energy is calculated from (2.12) and the fact that the soliton 
configuration is an R ,  half-orbit and an S, half-orbit: 

Q 

E,, = FWp(uS) - Q - I  C [R,(uP) + S ~ ( U ! >  - v(~?) l  (3.13) 

where U ,  is any point in the soliton configuration, Q is the period of the ground-state 
configuration and U !  (i  = 1, . . . , Q )  are points in the C, ground state. 

r = l  

3.2. Numerical method 

Analytical solutions to the minimisation eigenvalue equation (3.1) can be found in some 
special cases (see § VID of Chou and Griffiths (1986)) but in general this highly non- 
linear equation must be solved numerically. For this purpose it is convenient to replace 
Win (3.1) and (3.3) by the periodic function 

(3.14) 

where m is integer, so that one may restrict the position of the atoms to the inverval 
0 d U < 1. We shall impose a grid of n points in the unit interval and solve the discretised 
equation 

(3.15) 

W * ( y )  = min W ( m  + y)  
m 

A + x ( j )  = min[K(j, i )  + x ( i ) ]  
I 

where 

K ( j ,  i )  = V(U,)  + W*(U,  - U ,  ) (3.16) 

The formal analogy of (3.15) with the eigenvalue problem in linear algebra is apparent 
if one replaces sum by product and min, by Z l .  Cuninghame-Green (1979) has developed 
the algebraic theory for such operations and, in fact, equation (3.15) is an example of 
the eigenvalue problem in minimax algebra. This author has shown that the eigenvalue 
A is unique and is equal to the minimum over all cyclic averages of the form 

i , j =  1 . 2 , .  . . n ,  u L ,  U ,  E [0, 1). 

P 

( K ) ,  = P - '  K ( j m , j m + l )  (3.17) 

where C is a cycle: j , ,  j,, . . . , j p + l  = j , .  In terms of our original (however discretised) 
physical problem, the minimising cycle corresponds to the ground-state configuration, 
whose energy per particle is the eigenvalue A. A path from j o  to j m  is a finite sequence of 
pointsj,, j , ,  , . . . jm.  The length of this path is m and its weight is defined as 

m = l  

m- I  

The most efficient algorithms for computing optimal cycles (Karp 1978, von Golit- 
schek 1982) exploit the idea that a path (long enough) of minimal weight must contain 
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an optimal cycle. The algorithm described below is a modification of von Golitschek’s 
algorithm and computes the minimum cyclic mean A ,  a minimising cycle and the cor- 
responding eigenvector x(i) .  

In what follows, L is an upper bound for A ,  J i s  a subset of N = {1,2,  . . . , n}, y ( j )  is 
real-valued and z ( j )  is an integer-valued function. A prime, as in J’ or y ’ ( j ) ,  denotes a 
new value (or set) produced by the algorithm. If Cis a cycle,jl,j2, . . . , j P +  = jl, we say 
that y(j) is consistent on C provided 

(3.18) 

where L is the average of this cycle. (Note that on a one-cycle C = j , ,  any y( j l )  is 
consistent .) 

Step 0 (initialisation). Calculate the averages of all one- and two-cycles and let L be 
the minimum of them, and C a cycle where this minimum is achieved. Let y ( j )  = +m for 
j not in C, and choose y(j) consistently on C. Let t ( j )  = 0 (a dummy value) for j not in 
C, r ( j J  = jl if C = j ,  is a one-cycle, and t ( j l )  = j,, z ( j J  = jl if C = (jl, j,) is a two-cycle. 
Let J consist of the elements in C. 

Step 1. For j from 1 to n ,  let 

A j m )  + L = K(im,im+l) + Y ( J ~ + I )  

y’(j) = minb(j) ,  K( j ,  i) + y ( i )  - L ;  for all i E J]. (3.19) 

If y ’ ( j )  < y ( j ) ,  let z ( j )  = i, for some i where the minimum in (3.15) occurs. After the 
y ’ ( j )  have been calculated, let 

J’  = { j : y ’ ( j )  <Y(j>>. (3.20) 

If J’ = 0, then stop. If J’ is not empty, set J = J ’ ,  y ( j )  = y ’ ( j ) ,  for all i, and go to step 2. 

Step 2. Look for a cycle C’ of the z map (i.e. some j such that z(. . . ( t ( j ) )  . . .) 
= j ) ,  for which L’ is less than L.  If such a cycle is found, let L = L’,  C = C‘ and return 
to step 1. 

When this algorithm stops, L is equal to A ,  the minimising cyclic average, and Cis  a 
minimising cycle. If L has the same value as in step 0, y ( j )  is the eigenvector associated 
with this cycle. If L has decreased, an additional computation is required, as follows: 
Let y ( j )  = f x  at all points not in the minimising cycle C. Choose y ( j )  consistently on C 
and let r ( j )  = 0 for a l l j  not in C. Then iterate step 1 without performing step 2, until the 
stop condition ( J ’  = 0) is satisfied; at this point, y(j) is the required eigenvector and 
t ( j )  is the associated map, in the sense that for all j ,  t ( j )  is a value of i at which the 
minimum on the RHS of (3.15) is achieved. 

The observed dependence on the running time of the algorithm on the number n of 
grid points is about n2. Typical values for the CPU time of a run for a grid of 1000 points 
are about 10 min on a microVAX (about 1 min on a VAX 11/870) for a FORTRAN-Coded 
program. In general, much coarser (for example 100 points) grids give a sufficiently 
good approximation to the potentials for most purposes (a few seconds on a microVAX). 

4. Phase diagram for a specific model 

4.1. Phase diagram 

We find that some of the potentials V(u) ,  (2.1), with third or fourth harmonics yield 
asymmetric commensurate ground states. In this section we shall study the phase diagram 
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Figure 3. The periodic potential V(u)  given by (2.1) with E~ = 4, .c3 = Band E~ = 0 ( k  3 4) 

for one such model: the model with the periodic potential (2.1) in which 

E 2  = a  Eg = and E k  = 0 ( k  2 4). (4.1) 
The function V ( u )  has convex portions around U = 50.35 (modulo 1) as seen in figure 
3. This structure seems to help the appearance of asymmetric ground states. We note, 
however, that such a structure is not essential; even infinitesimally small c2 and .z3 can 
yield asymmetric commensurate states (see 0 5) .  

Figure 4 shows a portion of the phase diagram in the y-K plane for the model (4. l), 
obtained by the method of effective potentials. A rough phase diagram was first obtained 
by finding ground-state configurations at various points in the y-K plane. At this stage 
a few hundred grid points per unit interval were used. Then more precise locations of 
the phase boundaries were determined by calculating the energies of appropriate solitons 
from the effective potentials obtained with 1000 grid points per unit interval. For 
example, figure 5 shows the effective potential F(u)  defined by (3.5) associated with a 
symmetric ground state of w = 5 at K = 1.2, y = 0.3775, obtained with 1000gridpoints. 
The locations of the three absolute minima give the locations of atoms (modulo 1) in the 
ground state. The relative height of the secondary minima with respect to the absolute 
minima gives the creation energy of an advanced soliton, from which the phase boundary 

Figure 4. The phase diagram in 
y-K plane for the model (4.1). 

the 
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U U 

Figure 5. The effective potential F(u)  associated 
with a symmetric ground state of period 3 defined 
by ( 3 4 ,  calculated at K = 1.2, y = 0.3775. 

Figure 6. The effective potential F,(u)  associated 
with an asymmetric ground state of period 2 
definedby(3.9),calculatedatK = 1 . 2 , ~  = 0.425. 
There are infinitely many secondary minima, 
which accumulate to the points indicated by the 
arrows. 

~ ‘ (4)  is calculated as describedin § 2. An example of the effective potential F,(u) defined 
by (3.9) associated with a symmetry-breaking ground state of period 2 is shown in figure 
6, calculated at K = 1.2, y = 0.425, with 1000 grid points. The locations of the two 
absolute minima give the locations of atoms (modulo 1) in the ground state. The 
secondary minima (infinitely many, with equal height) correspond to a configuration 
with two retarded solitons of different types infinitely far apart. The relative height of 
the secondary minima with respect to the absolute minima gives the sum of the energies 
of the two solitons, for which the phase boundary y- ($ )  is calculated as described in § 2. 

Several locations of the boundaries of the o = 0 and (o = 4 phases thus obtained were 
compared with those obtained from more precise calculations of soliton energies based 
on the solutions to the force equilibrium equations 

aH/au, = 0. (4 9 2) 
The comparison of the two results at several locations shows that the errors in the results 
of the method of effective potentials with 1000 grid points are more or less of order lo-’ 
in y. 

Only a few commensurate phases are shown in figure 4. Unmarked regions are 
occupied by (infinitely many) other commensurate states and incommensurate states. 
The numbers in the figure represent the winding numbers and the symbols A ,  B and C 
indicate the types of ground states as discussed in 9 2. The horizontal bars separate 
phases of the same winding number but different types. The order parameter x defined 
in (2.7) and (2.8) changes discontinuously (continuously) when a solid (broken) hori- 
zontal bar is crossed. For this specific model (4.1) all the observed transitions between 
A and C phases are discontinuous (‘first-order’ transitions), whereas those between B 
ana C are continuous (‘second-order’ transitions). No transitions between A and B are 
observed in this model. 

As in the case of the model studied by Griffiths and Chou (1986) and Chou and 
Griffiths (1986) in which commensurate states of type A and type B appear, there are 
accumulation points of horizontal bars in the y-Kplane for our model. They found some 
such points on the boundaries of the o = 0 and the o = $ phases (see figure 5 of Griffiths 
and Chou (1986) or figure 15 of Chou and Griffiths (1986)). They further noticed that 
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Figure 7. Configurations of the fi fi fi for advancedsolitonin different values the of K .  w = Ophase 

these points occur at the same value of K at which the minimum-energy soliton in 
the corresponding U = 0 and w = 4 phases changes its character, and that the phase 
boundary has discontinuous slope at these points. In figure 4 some such special points 
in our model are shown by full and open circles found by observing changes in the 
character of appropriate solitons, which will be discussed in the next subsection. The 
phase boundary has discontinuous slope at full circles, which are accumulation points of 
solid horizontal bars, and has continuous slope at open circles, which are accumulation 
points of broken horizontal bars. 

4.2 .  Changes in the character of solitons 

The configurations of the minimum-energy soliton in the U = 0 phase for K = 3.7,2.0 
and 1.0 are shown in figure 7. The soliton for K larger than KO = 3.66204 (the upper 
accumulation point on the boundary of the w = 0 phase shown in figure 4) is symmetric; 
that for KO > K > K 1  = 1.77485 (the lower accumulation point) is asymmetric, with one 
atomintheconvexpartof V ( u )  nearthetopofthepotential. Thesymmetric(asymmetric) 
soliton exists even for K < KO ( K  > K O )  as a metastable state but has higher energy than 
the asymmetric (symmetric) soliton. The change in character of the minimum-energy 
soliton is of first order in that its energy has discontinuous slope at K = KO,  which yields 
the discontinuous slope of the phase boundary. The minimum-energy soliton for K < K 1  
is again symmetric. 

Now we discuss the soliton in the U = 2 phase. Let us first consider the soliton in 
the A phase ( K  > K, = 3.34731). The minimum-energy retarded soliton above the 
uppermost accumulation point is symmetric, as schematically shown in figure 8(a) ;  below 
this point it is asymmetric, figure 8(b) ;  it becomes symmetric again, figure 8(c), when 
the second accumulation point is passed from above; and so on. In addition to the 
changes in symmetry, it is noticed that the ‘core’ of the soliton expands each time an 
accumulation point is passed from the higher K side. It is likely that there are a series of 

Figure 8. Changes in the character of the retarded 
soliton in the +A phase. 

Figure 9. The three retarded soli- 
tons on the horizontal bar at K = 
3.34731 in the w = 4 phase. 
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accumulation points and they accumulate to the left edge of the horizontal bar in the 
w = i phase at K = K, (the existence of the accumulation point of accumulation points 
was suggested by Griffiths and Chou (1986)). The core of the soliton will grow larger 
and larger as K, is approached. We shall show this is actually the case. 

On the ‘coexistence line’ K = K,, A and B phases have the same energy per atom, 
and there are three types of retarded solitons (the Landau potential U(x) introduced in 
§ 2 has three absolute minima in each period). They are shown in figure 9. The soliton 
in the &A phase can be viewed as a bound state of these three solitons with 11, to the left 
of I and 112 to the right of I .  The change in the character of the soliton corresponds to 
the change in the distances between constituent solitons. For the first three configurations 
of the soliton in figure 8, this view point may not be clear. However, as the core of soliton 
expands, this viewpoint becomes easier to see (e.g. figure 8(d)). If the distances dl and 
d2 between solitons of type I and type 11, and between type I and type 112 respectively 
are large enough, the energy of the soliton in the A phase as a bound state of the three 
constituent solitons may be expressed as 

E(d, ,d , )  = ( y  - y,)/2 +aexp(-bdl )  +aexp(-bd,)  (K = Kc) (4.3) 
at K = K,. Here yc = 0.48039 is the left edge of the horizontal bar at K = K,, and a and 
b are positive constants. The first term in (4.3) is the sum of the energies of the three 
constituent solitons; this quantity has linear dependence in y and is zero at y = y,, as 
seen from the general arguments in § 2. The second and third terms are the two-body 
interaction energies. The interaction between solitons I and 111 has the same distance 
dependence as that between I and II,, because the soliton I is symmetric and the soliton 
111 is the mirror image of the soliton I12. It can be shown (Tang 1987, Yokoi et a1 1988) 
that for the present model the interaction is repulsive and decays exponentially as 
the distance increases. It is somewhat ambiguous how to define the distance between 
solitons. We use a convention such that d l  = 2 and d, = 3 for the configuration in figure 
8(d). If one knows the configurations of isolated solitons I and II,, the constants a and 
b can be evaluated (Tang 1987). We obtain a = 6.3847 X and b = 3.8615 by solving 
the force equilibrium equations (4.2) for these soliton configurations. 

The energy of the soliton in the ;A phase is larger than (4.3) for K > K,; the 
configuration in the core of the soliton looks very much like that of the C phase, and the 
C phase has higher energy per atom than the A phase. Slightly above K, the soliton 
energy would be 

E(dl ,  d2)  = ~ ( 2 d  - v)(K - K,) + ( y  - y,)/2 + a exp(-bd,) + a exp(-bd,) (4.4) 

where d = dl + d, and E(K - K,)  is the difference of the energies per atom in the C and 
A phases. The constant E is found to be 1.6253 x 10-* from the energy calculations of 
the C and A phases near K,. The parameter v (constant) is introduced to take account 
of the K dependence of the energies of the constituent solitons in the vicinity of K,. 

If one accepts the phenomenological expression (4.4) for the soliton energy, the 
minimun-energy soliton is found by minimising (4.4) with respect to dl and d2 under the 
constraint that d, and d2 are integers. The minimum of (4.4) is achieved when d l  = dZ,  
and the dl minimising (4.4) increases in a stepwise manner as K - K, is decreased; dl 
increases from N to N + 1 at K = KN, where KN is calculated from (4.4) as 

KN - K, = (a /2~)(1  - e-b) e-bN. (4.5) 
The minimum-energy soliton is thus predicted to change its character infinitely many 
times as K, is approached. The boundary of the ;A phase is given by E(dl,  d,) = 0. y N ,  
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Figure 10. The points ( Y , ~ ,  K,,,) on the boundary 
of the $A phase at which the minimum-energy 
soliton changes its character. The straight line 
is the prediction (4.7) of the phenomenological 
theory. enological theory. 

Figure 11. The points (y,.,,. KAT) on the boundary 
of the tC phase at which the minimum-energy 
soliton of type I1 changes its character. The 
straight line is the prediction of the phenom- 

the value of y corresponding to KN on the boundary, is calculated from (4.4) as 

yc  - yN = 2a e - b ” [ ( l  - e-b)(2N - v /2)  + 21. (4.6) 
Therefore, these points ( y N ,  K N )  on the boundary accumulate to the point ( yc ,  K,) 
according to 

Y c  - YN = a(K,v - Kc)[-ln(K, - Kc) + In1 (4.7) 
where a and is expressed in terms of a. b ,  
E and v .  

The above phenomenological argument fails to explain the appearance of the asym- 
metric soliton (d ,  # d,) like the one in figure 8(b) ( d ,  = 0, d2 = 1). This is because we 
have neglected the three-body interaction among the constituent solitons. The three- 
body interaction is much smaller (Szpilka and Fisher 1986, Fisher and Szpilka 1987) than 
the pair interaction for large dl and d Z ,  although it cannot be neglected for small d l  and 
dZ.  Actually, the results of the method of effective potentials show that the segments of 
the phase boundary where the minimum-energy soliton is asymmetric shrink rapidly as 
K, is approached. The predictions (4.5)-(4.7) are concerned with the asymptotic region 
where such segments are negligibly small. 

For quantitative comparison between the ‘theory’ and ‘experiment’, we evaluated 
the soliton energy from the numerical solution to the force equilibrium equations (4.2) 
to find the precise locations at which the change in character occurs. We find good 
agreement with (4.5) for N 2 3 (relative error less than lop4).  From the fit of the data 
with (4.6), the unknown parameter in the ‘theory’ is found to be v = 0.1206. The 
numerical data for ( y N ,  K N )  are plotted in figure 10 as suggested by the prediction (4.7), 
where /3 is calculated to be 2.179 by using the value of v obtained above. There are a 
pair of data points for each value of Nbecause of the existence of the asymmetric soliton. 
Only one ( N  = 0) of the pairs is separable in the figure. The lowest point in the figure 
corresponds to the uppermost point on the boundary of the ;A phase in figure 4. Figure 
10 clearly shows that the asymptotic behaviour of the change in the character of the 
soliton is correctly described by the simple phenomenological theory. 

The boundary of the tC phase near Kc can be studied in a similar way but with a slight 
modification. In this phase there are two types of retarded solitons; one of them changes 

are constants: a = 8&/b = 0.033672 and 
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its character infinitely many times as K ,  is approached, while the other does not. The 
latter soliton is essentially the same as the type-I soliton in figure 9. The former can be 
viewed as a bound pair of type-11, and type-11, solitons with type 11, to the left of type 
11,. The core of this type-I1 composite soliton looks like the configuration of the &A 
phase, and it expands as K ,  is approached. The same phenomenological argument as 
before can be applied and we obtain the following expression for the sum of the energies 
of type-I and type-I1 solitons: 

EI + EII(d) = ~ ( 2 d  - 1 + .)(Kc - K )  + ( y  - y,)/2 + a’ exp(-b’d) (4.8) 
where d is the distance between the constituent solitons in the type-I1 soliton defined 
with a similar convention to the one we have used to define d,  and d2 for the soliton in 
the hA phase. The constants E and I/ are the same as before, whereas a‘ and b’ in the 
interaction term are new ones: a’ = 5.0732 X lo-* and b’ = 4.1314 as calculated from 
the configurations of the isolated constituent solitons at K = K,. The locations ( y N ,  K N )  
on the phase boundary at which the type-I1 soliton changes its character (d  increases 
from N to N + 1 as K is increased) predicted from (4.8) satisfies equations similar to 
(4.5)-(4.7). The locations ( y N ,  K N )  numerically evaluated from the explicit calculations 
of the soliton energies agree well with the ‘theoretical’ predictions as before (relative 
error less than for N 2 2). The numerical data are plotted in figure 11, which again 
shows that the asymptotic behaviour is correctly described by the simple phenom- 
enological theory. (The lowest data point in the figure corresponds to the lowest full 
circle on the boundary of the iC phase in figure 4.) 

The phenomenological theory can be applied to describing the change in the charac- 
ter of the soliton in the vicinity of any of the solid horizontal bars in the phase diagram, 
figure 4. The same is true for the model studied by Griffiths and Chou (1986) and Chou 
and Griffiths (1986) mentioned earlier. 

The change in the character of the soliton at an open circle in figure 4 is more delicate 
than that at a full circle. We found only one such a point at K = 1.026 on the boundary 
of the BAphase. (We do not know whether there are other such points.) Below this point 
the advanced soliton in the $A phase is symmetric with an atom (at the centre of the 
soliton) right on the top of the potential V .  As this point is passed from below, the atom 
at the centre moves off from the symmetry point of the potential continuously and the 
soliton becomes asymmetric. The soliton energy changes continuously and smoothly. 
The change in the character of the soliton is of ‘second order’. (The asymmetric soliton 
is no longer a minimum-energy soliton above the full circle at K = 1.092, but exists as a 
metastable one. The minimum-energy soliton is now symmetric, with no atom at a 
symmetry point of the potential V in the core of the soliton.) 

5. When does the symmetry-breaking state appear? 

As we have seen, there exists a potential V(u)  in the model (1.1) that yields symmetry- 
breaking ground states. What conditions should V(u) satisfy to have asymmetric com- 
mensurate states? We shall partially answer this question by considering the w = 3 phase 
for a limited class of V(u) .  

If both the type-A and type-B configurations are unstable, the ground state must be 
asymmetric. We therefore start with the stability analysis of the type-A and type-B 
structures of period 2. This may be done by studying the Landau potential U(x) intro- 
duced in § 2. For the case of period 2 it is given by 

U(x)  = [V(x + 5) + V(x - 5‘)]/2 + 2(5‘ - 4)* + ( y  - &)2/2 (5.1) 
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where E(x) is defined as a solution of 

V’(x + E )  - V’(X - E )  + 8E - 2 = 0 ( 5 4  
V’ being the derivative of V .  The locations of atoms u1 and u2 in a ‘unit cell’ are related 
withx and E :  u1 = x - E and u2 = x + E .  If (5.2) has more than one solution for a given 
x, E is understood to be the solution that yields the minimum of (5.1). In any case the E 
must satisfy, at least, the condition of local minimum energy for a given x: 

V ( X  + 5) + V ( X  - E )  + 8 > 0. (5 .3)  
For x corresponding to a stationary configuration (a configuration satisfying the force 
equilibrium equations (4.2)) U’(x) = 0. This configuration is unstable if U“(x) < 0 and 
(locally) stable if U ( x )  > 0. From (5.1) and (5.2) we have 

2[V’(u1) + V ( u 2 ) ]  + V’yu*)vf’(u2) 
4 + [V”(u,) + V ( u 2 ) ] / 2  

V ’ ( X )  = (5.4) 

Note that the denominator in (5.4) is always positive, owing to the condition (5.3). For 
the A phase (x = 0) (5.4) yields vl(0) = V”(u,). 

Using the formula (5.4) one can argue to some extent the relation between the 
stability of the A and B states of period 2 and the functional form of V(u) ,  but we will 
be more specific. We consider the potential (2.1) with &k = 0 ( k  2 4), the model studied 
in Q 4 being a specific example of this class (the class of potentials with &k = 0 ( k  2 3 )  was 
studied by Chou and Griffiths (1986)). Applying (5.4) to this class of potentials, one 
finds that the B state (x  = 4, E = 4) is unstable for K > KB, given by 

KB = l 6 ~ ~ / [ ( l  + 9 ~ ~ ) ~  - (4.~~)~] (5.5) 
when 
V(u)  has no secondary minima, the A phase is unstable for K < KA and 
is given by 

> 0 and (1 + 9 ~ ~ ) ~  > ( 4 ~ , ) ~ ,  and that it is always unstable when < 0. When 
> 0 where K A  

KA = (1 - 4 u 0 ) / [ ~ ’ ( ~ , ) / ~ 1  (5.6) 
and uois determined by V”(u,) = 0 (0 < uo S a) .  For apotential V(u)  such that KA > KB 

the ground state must be asymmetric at least for K A  > K > KB. The parameter values 
(4 .1) ,  for example, realise this situation. There exist the parameters < 0 and > 0 
such that V ( u )  = 0 has two real solutions for u in the interval (0, b); we denote these 
solutions by U- and U+ (U- < U,). In this situation the Astate is unstable for K ,  < K < K- 
provided that K ,  < K- ,  where 

KI  = (1 - 4ui)/[V’(u,)/K]. (5 .7 )  
Therefore, the ground state must be of type C for intermediate strength of the potential 
(remember that the B state is unstable for c2 < 0). 

Even when one or both of the A and B states are (locally) stable the symmetry- 
breaking, C-type ground state can appear. For detailed investigation of when the C 
phase of period 2 appears, we have made combined use of the stability analysis and the 
method of effective potentials. Figure 12 summarises the results of the investigation. A 
point in the E * - E ~  plane specifies a potential V(u) .  For the potential corresponding to a 
point ( E ~ ,  E ~ )  in the region marked by the symbol [B, C.A] in figure 12, for example, the 
second-order transition from the B to C phases and then the first-order transition to the 
A phase occurs as the strength of the potential, K ,  is increased. The period (comma) in 
the symbol indicates that the transition is of first (second) order. For potentials in the 
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Figure 12. Types of phasesof period 
2 realised by the class of potentials 
with second ( E J  and third ( E ~ )  har- 
monics for the potential corre- 
sponding to a point ( E ~ ,  E ~ )  in 
the region marked by [B, C.A], for 
example, the ground-state changes 
from type B to type C through the 
second-order transition and then to 
type A through the first-order tran- 
sition as the strength of the poten- 
tial is increased. The line E~ = 0 is 
one of the boundaries separating 
different regions. 

upper region in the E Z - E ~  plane there appear asymmetric ground states at intermediate 
strength of the potential; for those in the lower right region, [B.A], the first-order 
transition from the B to A phases occurs as K is increased; for those in the lower left 
region, [A], only the A phases are obtained. The line = 0 is one of the boundaries 
separating different regions. The boundaries marked by TCL are projections of the 
tricritical lines in the E ~ - E ~ - K  space onto the E Z - E ~  plane, and the one marked by CEL is 
the projection of the line of critical end points (Griffiths 1975). These features can be 
seen more clearly in an intersection of the phase diagram in the E?-E~-K space with a 
plane of = constant. For instance, see figure 13. In figure 13 the full (broken) lines 
indicate that the transition between the two phases separated by the line is of first 
(second) order. The nature of the transition (first- or second-order) between the A 
and C phases changes at a tricritical point (TCP), figures 13(b)-(d). The second-order 
transition line (or the line of criticai points) between the B and C phases terminates at a 
critical end point (CEP), figures 13(a) and (b ) .  

The boundary lines in figure 12 are obtained as follows. The critical end line is the 
intersection of the three surfaces (see figures 13(a) and ( b ) ) :  one surface is given by 
U(0) = U(;),  the boundary between the A and B phases; another is the boundary 
between the B and C phases, which is given by K = K B  where K B  is defined in (5.5). The 
critical end line is obtained by solving these two equations simultaneously. The tricritical 
line is a line on the boundary between the A and C phases (see figures 13(b)-(d)) at 
which the nature of the transition changes. The portion corresponding to the second- 
order transition of the phase boundary is given by u”(0) = 0 and I Y ( ~ ) ( O )  > 0, where 

u(4)(0) = v(4)g) - 3 [ v y g y / p  + vyg)] (5 .8)  
is the fourth derivative of U at x = 0. In (5.8) E is the solution of (5.2) for x = 0. The 
tricritical line is obtained by solving V ( 0 )  = 0 and I ! I ( ~ ) ( O )  = 0 simultaneously. The first 
equation is equivalent to K = K A  for e2 > 0 and K = K i  for < 0 ,  where K A  and K ,  
are defined in (5.6) and (5.7). The broken curve in figure 12 is given by the condition 
U+ = U - ,  where U? are the solutions to V(U)  = 0 as defined above (5.7). This condition 
leads to 

768.~22 = -3(1 - 1411 + q 2 )  k ( 5  + q)[3(3 - q ) ( l  + 5q)]”2 (5.9) 
a n d 2 ~ ~  > - q ,  where q = 2 7 ~ ~ .  The dotted curve corresponds to the common asymptote 
of the two first-order transition lines in figure 13(e). On this line V(U)  has three absolute 
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Figure 13. Intersection of the phase 
diagram in the E~-.E-K space with 
the plane of E~ = constant. The full 
(broken) line indicates that the 
transition between the phases sep- 
arated by the line is of first (second) 
order. The points marked by TCP 
and CEP are tricritical points and 
critical end points. 

minima per period (at the right end of the line, ( E * ,  E ~ )  = (-g, &), the three minima 
collapse); above the line it has one absolute minimum at U = 0; below the line it has two 
at finite U .  This line is given by = ~ $ / 4 ( 1  + E * )  and 

We have considered only the commensurate phase of period 2. The same analysis 
can be done, in principle, for other commensurate phases, although the analysis will 
be more complicated for longer-period phases. One will find different conditions for 
asymmetric ground states of different winding numbers to appear. 

S -2. 

6. Concluding remarks 

We have demonstrated the existence of symmetry-breaking commensurate states in 
generalised Frenkel-Kontnrova models (1.1) with periodic, symmetric substrate poten- 
tials V(U) .  The existence of such structures is not obvious. The phase diagram for a 
specific model has been studied in detail. The horizontal bars (the first-order transition 
lines) in figure 4 are analogous to the ones obtained by Aubry et al(1985) and by Griffiths 
and Chou (1986) and Chou and Griffiths (1986), while the broken horizontal bars 
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(the second-order transition lines) seem to have no analogous examples in models of 
commensurate-incommensurate transitions studied previously. 

We note that symmetry-breaking commensurate states can be found also in pre- 
viously studied models. ‘There are at least two such models. One is the model (1.1) in 
which Vis a piecewise parabolic function with continuous derivative (Bullett 1986, Chou 
and Griffiths 1986). For special choice of the parameter y and the strength of V .  the 
model yields ‘sliding’ commensurate states (invariant circles); in other words the Landau 
potentials U(x) introduced in § 2 are independent of x .  In such a circumstance the 
configuration corresponding to any value of x is a ground state and it is asymmetric for 
almost all x .  The piecewise parabolic nature of V seems crucial for the occurrence of 
sliding commensurate states. We claim that the symmetry-breaking state of this type is 
rather exceptional. 

Another example is an exactly solvable model for a ferroelectric system in an electric 
field studied by Aubry et a1 (1985). The model is an extention of (1.1) such that the 
system has two sublattices. The Hamiltonian has reflection symmetry without an electric 
field, but some of commensurate states have asymmetric configurations. The existence 
of two sublattices is essential to the appearance of symmetry-breaking states in this 
model. These states exist independently of the strength of a periodic potential, in contrast 
to the case in the model (1.1). 

As suggested by the phenomenological argument in § 4, the phenomenon of infinitely 
many changes in the character of solitons (discommensurations) seems to be a universal 
feature associated with the first-order transition between phases with the same period but 
different symmetries. The phenomenological theory predicts that the phase boundary in 
the vicinity of an end point of a solid horizontal bar is a portion of a polygon with infinitely 
many edges; the vertices of the polygon accumulate to the end point of the horizontal 
bar. The phase boundaries for the model of Aubry et a1 (1985) mentioned above, in an 
electric field, have this property (see figures 6 and 7 in Aubry (1985)), which we think, 
can be understood by this picture of infinitely many changes in the character of solitons. 

Recently, Yokoi (1988) has studied a specific example of the change in the character 
of solitons in the model with a second harmonic added to a sinusoidal potential, whose 
phase diagram was first worked out by Griffiths and Chou (1986). He  considers the 
soliton in the w = 0 phase, and shows that the points on the phase boundary at which 
the soliton changes its character accumulate at K = 0, y = 0. The way they accumulate 
is different from the result of our analysis in § 4 for the soliton in the w = 4 phase: the 
values of K at which the soliton changes its character accumulate according to a power 
law KN - N-* ( N +  m) in Yokoi’s case, while they obey an exponential law, equation 
(4.5), in ours. The shapes of the phase boundaries are also different in the two cases: 
parabolic in Yokoi’s analysis and linear with a logarithmic factor, equation (4.7), in ours. 
We suspect that Yokoi’s analysis is relevant to the LL) = 0 phase but not to accumulation 
points on the other phase boundaries with horizontal bars. 
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